Generalized law of friction between elastomers and differently shaped rough bodies

نویسندگان

  • Valentin L. Popov
  • Lars Voll
  • Qiang Li
  • Young S. Chai
  • Mikhail Popov
چکیده

In this paper, we study theoretically and experimentally the friction between a rough parabolic or conical profile and a flat elastomer beyond the validity region of Amontons' law. The roughness is assumed to be randomly self-affine with a Hurst exponent H in the range from 0 to 1. We first consider a simple Kelvin body and then generalize the results to media with arbitrary linear rheology. The resulting frictional force as a function of velocity shows the same qualitative behavior as in the case of planar surfaces: it increases monotonically before reaching a plateau. However, the dependencies on normal force, sliding velocity, shear modulus, viscosity, rms roughness, rms surface gradient and the Hurst exponent are different for different macroscopic shapes. We suggest analytical relations describing the coefficient of friction in a wide range of loading conditions and suggest a master curve procedure for the dependence on the normal force. Experimental investigation of friction between a steel ball and a polyurethane rubber for different velocities and normal forces confirms the proposed master curve procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the role of scales in contact mechanics and friction between elastomers and randomly rough self-affine surfaces

The paper is devoted to a qualitative analysis of friction of elastomers from the point of view of scales contributing to the force of friction. We argue that--contrary to widespread opinion--friction between a randomly rough self-affine fractal surface and an elastomer is not a multiscale phenomenon, but is governed mostly by the interplay of only two scales--as a rule the largest and the smal...

متن کامل

Evolution of real contact area under shear and the value of static friction of soft materials.

The frictional properties of a rough contact interface are controlled by its area of real contact, the dynamical variations of which underlie our modern understanding of the ubiquitous rate-and-state friction law. In particular, the real contact area is proportional to the normal load, slowly increases at rest through aging, and drops at slip inception. Here, through direct measurements on vari...

متن کامل

Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis.

The paper presents a combined experimental and theoretical approach to the understanding of hysteresis and adhesion contributions to rubber friction on dry and lubricated rough surfaces. Based on a proper analysis of the temperature- and frequency-dependent behaviors of nonlinear viscoelastic materials such as filler reinforced elastomer materials, master curves for the viscoelastic moduli are ...

متن کامل

Modelling Friction and Abrasive Wear of Elastomers

In order to properly model the friction and wear of elastomer materials, it is essential to understand some specific mechanical and tribological features. Mechanical characteristics of elastomer materials are different from those of metals and other relatively hard materials. Elastomers can bear large deformations, the stress-strain curves are non-linear, time and temperature dependent. When th...

متن کامل

Damping Behavior of the Phenolic Based Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

Attempts have been made for the first time to produce a friction material with thermal sensitive modulus by the inclusion of combined plastic/rubber properties of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation for the purpose of increasing the damping behavior. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and elastic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014